VerX: Safety Verification of Smart Contracts

1,2

Anton Permenev Dimitar Dimitrov?

!ChainSecurity AG, Switzerland
{firstname } @chainsecurity.com

Petar Tsankov!'?2 Dana Drachsler-Cohen?

Martin Vechev?

2ETH Zurich, Switzerland
{firstname.lastname } @inf.ethz.ch

https://verx.ch

Abstract—We present VERX, the first automated verifier able
to prove functional properties of Ethereum smart contracts.
VERX addresses an important problem as all real-world con-
tracts must satisfy custom functional specifications.

VERX is based on a careful combination of three techniques,
enabling it to automatically verify temporal properties of infinite-
state smart contracts: (i) reduction of temporal property verifi-
cation to reachability checking, (ii) a new symbolic execution
engine for the Ethereum Virtual Machine that is precise and
efficient for a practical fragment of Ethereum contracts, and
(iii) delayed predicate abstraction which uses symbolic execution
during transactions and abstraction at transaction boundaries.

Our extensive experimental evaluation on 83 temporal prop-
erties and 12 real-world projects, including popular crowdsales
and libraries, demonstrates that VERX is practically effective.

Keywords-smart contracts, temporal specification, automated
verification

I. INTRODUCTION

Ensuring correctness of smart contracts, programs that run
on top of blockchains, is a pressing security concern. Today,
billions worth of USD are controlled by smart contracts, and
only in the past couple of years, millions of these have been
lost by exploiting subtle flaws in the logic of these programs.
The issue is exacerbated as the code becomes immutable
once placed on the blockchain and hence bugs found after
deployment cannot be fixed.

Current audit practice. To mitigate this problem, current
audit practices of smart contracts involve checking whether the
code is safe against two kinds of vulnerabilities: (i) generic
security errors such as reentrancy and overflows, typically
achieved by running automated security tools (e.g., Secu-
rify [65]], Slither [4], and Mythril [50]), and (ii) deeper, custom
functional requirements, often done by manual, best-effort
code inspection. An example of such a requirement is: “The
sum of deposits never exceeds the contract’s balance.”. While
substantial advances in creating security tools that discover
generic errors were made over the last few years, there has
been little progress in automating the verification of deeper,
more challenging functional properties. This is particularly
problematic because manually checking the satisfaction of
such deeper requirements often involves non-trivial reasoning,
increasing the chance that critical bugs slip in production.

Goal: Formal guarantees for smart contracts. We believe
that smart contracts, similarly to any safety-critical system
(e.g., controllers deployed in cars and airplanes), must be

Investors can claim refunds only if the sum
of deposits never exceeded 10, 000 ether

Contract l Formalized requirement (§V)

always (claimRefund () ==>
! once (sum(deposits)>= 10000))

Abstraction predicates:

—— Instrumented
—— contract sum (deposits)>= 10000
! tadd predicates

\
|
|
|

e == Escrow !
|
|
|
|
|
|
|
|

Verified Counter-example

Fig. 1: Usage and verification flow of VERX. A requirement
is formalized as a temporal safety property. Then, the contract
is instrumented with the property and relevant predicates for
verification are automatically extracted. These are fed into
VERX, which either verifies the property, outputs a counter-
example, or indicates that additional predicates are needed.

formally verified before deployment. While this observation is
not new, only a handful of smart contract projects (e.g., Mak-
erDAO [7]]) have been formally verified so far. Current veri-
fication efforts are conducted using heavyweight interactive-
theorem provers, such as Isabelle/HOL [9] and Coq [68].
These require non-trivial manual effort and expertise, making
the audit process expensive and time-consuming, resulting in
limited adoption by the developer and audit communities.

Key challenges. To address this problem and enable devel-
opers and auditors to formally certify smart contracts without
requiring deep expertise in formal verification, one would ide-
ally create a verifier capable of automatically proving custom,
functional properties. However, building such an automated
verifier is challenging for at least two reasons.

First, smart contracts often interact with external contracts
via function calls. In turn, these external contracts may call
back the smart contracts we want to verify in arbitrary ways
(since their code is unknown). Automated verification in the
presence of such arbitrary and unboundedly many callbacks
from external contracts is challenging.

https://verx.ch

Second, smart contracts process an unbounded number
of transactions. Therefore, even though smart contracts are
usually loop-free, the verifier needs to soundly handle loops
because the contracts’ functions are executed in an implicit
infinite loop, processing a single transaction in each iteration.

VERX: Automated verifier for Ethereum contracts. In
this work, we introduce VERX, an automated verifier of
functional requirements for Ethereum smart contracts, which
aims to address the above challenges. The design decisions
underpinning VERX were strongly motivated by the practical
challenges that arise when auditing real-world smart contracts.

One of our key observations is that most real-world con-
tracts defend against external callbacks by ensuring that these
do not introduce new behaviors, i.e., any behavior with ex-
ternal callbacks is equivalent to another behavior without
external callbacks; we call these effectively external callback
free (EECF) contracts, adapting the earlier notion of effectively
callback free contracts [38]. VERX focuses on verifying EECF
contracts as they enjoy two important benefits. First, they
simplify the formalization of requirements, as auditors can
write the specification without explicitly considering all possi-
ble external callbacks. Second, the verifier can soundly avoid
exploring all possible external callbacks, which facilitates
precise and scalable analysis.

In Fig.[T|we depict the high-level steps performed by VERX.
As a first step, we formalize the requirements as temporal
safety properties in the specification language of VERX. We
identify temporal properties as a particularly good fit for
capturing contract requirements (also observed by [59]]), be-
cause contracts process sequences of transactions and temporal
properties can specify which sequences of contract states are
considered valid. To ease adoption, we use the syntax of
Solidity [[6] (the most widely used language for Ethereum
contracts) and extend it with temporal operators (e.g., always
and once) so to enable quantifying over contracts’ states.
Fig. [I] shows the formalization of an example requirement for
crowdsale contracts. In our evaluation, we illustrate further
examples and present common idioms (e.g., access control,
state transitions, and multi-contract invariants) of real-world
contracts that have been verified using VERX.

Once the property is formalized, VERX reduces the problem
of temporal safety verification to that of reachability checking
by instrumenting the provided contract with the formalized
property. By working with the instrumented instead of the
original contract, we can directly leverage state-of-the-art pro-
gram analysis methods, which typically focus on reachability
verification. Such a reduction approach to verification has been
shown effective in other settings (e.g., [26], [28]).

Given the instrumented contract, VERX carries out the ver-
ification by employing a particular combination of abstraction
and symbolic execution, one that is especially effective in
the setting of smart contracts. We refer to this combination
as delayed predicate abstraction. Concretely, to deal with the
unbounded number of transactions processed by the contract,
VERX abstracts contract states which arise in-between trans-

actions via a set of abstraction predicates while leveraging
symbolic execution for precise analysis within transactions. As
we demonstrate with examples later, delaying abstraction until
the end of transactions is essential as key invariants often break
in the middle of transactions. Moreover, precise reasoning of
individual transactions using symbolic execution is possible
because contract functions usually have bounded loops and
recursion (so to avoid infinite computations on the blockchain).

VERX automatically infers the abstraction predicates from
(i) the contract’s code, such as immutable variables and point-
ers to contracts (e.g., e == Escrow), and (ii) from the prop-
erty by extracting atomic predicates (e.g, sum(deposits)>=
10000); see Fig.[T} This means that users typically do not need
to provide any predicates to VERX and can use it in a push-
button manner. For example, as we show in our evaluation,
77 out of 83 properties can be automatically verified using
the predicates inferred by VERX, leaving only six properties
where the user had to provide additional predicates (shown
by the backward arrow). Further, because existing symbolic
engines for Ethereum are either unsound or inefficient (or
both), we introduce a new engine that precisely models non-
standard features of Ethereum’s Virtual Machine (such as
hash-based object allocations and gas mechanics) yet scales
well for a practical fragment of Solidity.

To demonstrate the effectiveness of VERX, we present
an extensive evaluation over 12 real-world projects with 83
relevant temporal properties. Our results show that VERX
scales to verifying real-world contracts.

Main Contributions. Our contributions are:

o A delayed predicate abstraction approach which com-
bines symbolic execution performed during transaction
execution with abstraction done in-between transactions.
Delayed abstraction is key to enabling automatic verifi-
cation of temporal safety properties of smart contracts.

o The first end-to-end verification system, called VERX,
which can automatically verify functional specifications
of real-world contracts. VERX incorporates delayed ab-
straction, a new symbolic execution engine which avoids
the pitfalls of existing tools, as well as sound handling
of key Ethereum features.

« An extensive experimental evaluation over 12 real-world
projects (138 contracts) and 83 safety properties, showing
that VERX can verify interesting temporal properties of
real-world smart contracts, including popular crowdsales
and libraries.

II. MOTIVATING EXAMPLE AND
VERIFICATION CHALLENGES

We now present a decentralized crowdsale scenario together
with relevant requirements and their formalization. We then
discuss key challenges when verifying such properties. In the
next section we present the verification flow of VERX and
how it addresses these issues.

R0 Claiming a refund by an investor decreases the escrow’s
balance by the investor’s deposit.

R1 The escrow’s balance must be at least the sum of investor
deposits, unless the crowdsale is declared successful.

R2 The escrow never allows the beneficiary to withdraw the
investments and the investors to claim refunds.

R3 Investors cannot claim refunds after more than 10,000

ether is collected.

(a) Requirements

1 contract Crowdsale {

2 Escrow escrow;

3 uint256 closeTime;

4 uint256 raised = 0;

5 uint256 goal = 10000 x 10%x18;
6

7 function constructor () {

8 escrow = new Escrow (0x1234);
9 closeTime = now + 30 days;
10 }

11

12 function invest () payable {

13 require (raised < goal);

14

15

16 escrow.deposit.value (msg.value) (msg.sender) ;
17 raised += msg.value;

18 }

19

20 function close () {

21 require (now > closeTime || raised >= goal);
22 if (raised >= goal) {

23 escrow.close () ;

24 } else {

25 escrow.refund() ;

26 }

27 }

28}

(b) Crowdsale smart contract

PYRO = D(claimRefund(address p) — Escrow.balance =
Escrow.balance® —-Escrow.deposits.[p])
¢R1 = O(state # SUCCESS
— SUTn(deposits) S;Escrow.balance)
Yr2 = O(—(#withdraw() A @clainRefund()))
¢R3 = O(claimrefund () — 4 (sum(deposits) > goal))

(c) Formalized requirements as temporal safety properties

1 contract Escrow {

2 address owner, beneficiary;

3 mapping (address => uint256) deposits;

4 enum State {OPEN, SUCCESS, REFUND}

5 State state = OPEN;

6 constructor (address b) {

7 owner = msg.sender;

8 beneficiary = b;

9 }

10 modifier onlyOwner ({

11 require (msg.sender == owner) ;

12 }

13 function close () onlyOwner {state = SUCCESS;}
14 function refund() onlyOwner {state = REFUND; }
15 function deposit (address p) onlyOwner payable {
16 deposits[p] = deposits[p] + msg.value;

17 }

18 function withdraw () {

19 require (state == SUCCESS);

20 beneficiary.transfer (this.balance) ;

21 }

22 function claimRefund (address p) {

23 require (state == REFUND) ;

24 uint256 amount = deposits|[p];

25 deposits[p] = 0;

26 p.call.value (amount) () ;

27 }

28}

(d) Escrow smart contract

Fig. 2: Crowdsale example: (a) requirements and (c) their formalization, (b) crowdsale contract and (d) escrow contract.

A. Crowdsale Example

We present a crowdsale use case, one of the most common
scenarios implemented on Ethereum. The goal here is to
collect 10,000 ether within 30 days after deployment. It
is considered successful if 10,000 ether has been collected
within 30 days, in which case the beneficiary can withdraw
the funds. Otherwise, the crowdsale is considered failed and
users are allowed to claim a refund. We summarize four key
requirements in Fig. [2a] showing how users (investors and the
beneficiary) can transfer funds. The crowdsale implementation
is given in Fig. [2] taken from the widely-used OpenZeppelin
library [3]], which uses an escrow contract to lock the funds
invested during the crowdsale. The contracts’ initial state is
defined by their constructors (the escrow is created by the
crowdsale’s constructor, at Line . In the crowdsale contract,
raised tracks the amount of collected funds, goal is set to
10,000 ether (1 ether = 10'® wei), and closeTime is set to
now (time of deployment) plus 30 days. The escrow tracks the
funds invested by individual users in the mapping deposits.

B. Challenge 1: Specifications in the Presence of Callbacks

As a first step, we formalize the requirements of the
crowdsale and escrow contracts (referred to as a bundle of
contracts). This is, however, nontrivial because the bundle does
not execute in isolation, but may also interact with external,
potentially malicious contracts.

Interactions with external contracts. We illustrate a possi-
ble interaction between the escrow and external contracts in
Fig. E} To refund an investor p, the escrow executes Line @
which calls a designated fallback function in p. Here, p is
any account that invested in the crowdsale, and the invoked
fallback function can thus have arbitrary behavior. In Fig. [3
we consider a scenario where p calls back claimRefund,
this time passing address g as an argument. The second call
claimRefund (q) 1S nested in claimRefund (p) . Importantly, the
nested call modifies the escrow’s state (changes escrow’s bal-
ance) before execution control is returned to claimRefund (p).
This means the state at the end of claimRefund(p) depends
on callbacks initiated by external contracts.

Escrow.claimRefund (p)

Property / System | Mythril Oyente Manticore | VERX

BT R -

g.fallback ()

Execution time

Fig. 3: Interaction between the escrow and external contracts
p and ¢q. Rectangles indicate the active function, dashed
lines indicate functions waiting for external calls to return,
downward and upward arrows indicate call and return points.

Specification challenge. Requirements typically implicitly
assume that the bundle executes without callbacks. For
example, requirement RO stipulates that at the end of
claimRefund (p), the escrow’s balance is decreased by p’s
deposit. This requirement does not hold if we interpret it
directly over executions with callbacks. As illustrated in
Fig. [3] there could be multiple calls to the escrow before
claimRefund (p) terminates, which may increase the escrow’s
balance (via calls to deposit(p)) as well as decrease it
(via calls to claimRefund (p)). One approach to address this
discrepancy is to directly account for all possible callbacks in
the formal requirement. Unfortunately, this is complicated and
error-prone because external contracts can behave arbitrarily:
one would need to accommodate infinitely many additional
behaviors. Conceptually, this challenge is analogous to speci-
fying concurrent objects [38]], [58]].

Effectively external callback free contracts. To address the
specification challenge, we mirror a well-established approach
to specifying concurrent objects [41]]. The idea is to let user
requirements implicitly assume no callbacks from external
contracts. We then lift those requirements to all possible
behaviors in a generic way. We do that by imposing an
extra condition that we call effective external callback freedom
(EECF), which generalizes [38] to our setting. This extra
condition stipulates that any behavior with external callbacks
is equivalent to a behavior without. Any two equivalent
behaviors are guaranteed to execute the same functions and
terminate in an identical state. For example, the behavior in
Fig. 3] is equivalent to executing claimRefund(p) and then
claimRefund (q) sequentially (without external callbacks).
The EECF condition is satisfied by most real-world con-
tracts. In practice, contracts defer calls to external contracts
to the end of transactions, as a generic defense against unex-
pected state changes due to malicious callbacks in the middle
of transactions. Indeed, this best practice provides a sufficient
condition to establish EECF. A contract that did not satisfy
EECEF is the infamous DAO contract [1], which has a function
similar to claimRefund with the exception that lines [25] and [26]
are switched, meaning that p’s deposit is set to zero only after
the call is made. Indeed, this enables an adversary to drain the
escrow’s balance (by reclaiming her deposit multiple times).

Inductive, holds: ¢r1 FP FP
FN TP

TN TN

Violation: pr2 FN TP

Fig. 4: Running existing symbolic analyzers for verifying ¢r1
and finding the violation of pRs.

Formalizing requirements. We present the formalization of
the requirements for our example in Fig. The properties
are interpreted over a sequence of blockchain states that
appear in-between transactions, i.e., states that users observe
before and after transactions. We deliberately do not define
the requirements’ semantics over states that appear within
transactions, as such states capture low-level implementation
details and transient computations which are not observable
by end-users. As mentioned, the EECF condition [ifts the
requirements to behaviors with callbacks: for any behavior,
we impose the given requirements on the equivalent behaviors
where the contract’s functions are invoked without callbacks.

Property pro formalizes that for any state (captured with
the always temporal quantifier, denoted by [) reached af-
ter a successful execution of claimRefund(address p), the
escrow’s balance (returned by Escrow.balance) equals the
previous escrow’s balance (denoted Escrow.balance®) minus
the deposit of investor p in the previous state. The property
refers to the p’s deposit in the previous state, as it is set to
zero after executing claimRefund.

Property g1 formalizes that if the escrow is not in state
success (indicating a successful crowdsale), then the sum of
deposits (returned by sum(deposits)) is less than or equal to
the escrow’s balance (returned by Escrow.balance).

Properties pro and ¢rgs use the once quantifier (denoted
by #) to refer to past states, where 4 holds if ¢ holds at any
past state of the contract. For example, @ro formalizes that at
no point in time the functions withdraw () and claimRefund()
have both been successfully executed by the contract. Property
¥rs uses the idiom 0O(p — —4%) to formalize that once
holds at a given state, then ¢ must never hold in the future of
the contract.

C. Challenge 2: Unbounded Verification

Next, we discuss the challenges in verifying the properties
of our example.

Precise symbolic execution for Ethereum. We start with
¥R1, a global invariant of the form O with no nested tempo-
ral quantifiers. This property is inductive: it holds in the initial
blockchain state, and it is also preserved after processing any
transaction sent to the contracts at any blockchain state where
wr1 holds. To establish this, one can encode all behaviors
of the functions using symbolic execution, which is possible
due to the limited use of loops/recursion in most contracts,
as we discuss in Section However, modeling Ethereum’s
Virtual Machine (EVM) both precisely and efficiently has
proved challenging. In fact, in Fig. 4] we show that 2 out of the
3 state-of-the-art symbolic execution engines for Ethereum fail

{¢}y {¥'}
f - f

C={f1,--, fn} 1 n iteratively compute:
%) {¢'} {¢'} reach(Cy)=a1V. Vou reach(Cyr) = ¢
l reach(C.)
instrument €, 09" inductive check C’» 0%’ compute fixed point ~ > check property . counter-example
C with ¢ via SE via delayed PA on fixpoint P
lholds T add predicates i holds
verified extract predicates from C and ¢ verified

Fig. 5: Flow of VERX: given a contract C and property ¢, VERX instruments C' with ¢ and attempts an inductive check using
symbolic execution. If this fails, it performs delayed abstraction using predicates extracted from C' and ¢.

to establish our invariant (i.e., to verify property pRr1); we note
that Manticore [2] is precise, but inefficient for some examples,
as we show in our evaluation (Section [[X)). We address this
challenge by designing a new symbolic execution engine for
EVM (Section that is both precise and efficient for a
practical fragment of Solidity (Section |VII).

Discovering deeper violations. The following sequence of
transactions violates property ¢Rra:

1) call to close() at state now > closeTime and raised <
goal, which changes the escrow’s state to REFUND;

2) call to claimRefund (p) with any address p;

3) call to invest () with ether value msg.value > goal;

4) call to close(), now at state now > closeTime and
raised > goal, which changes the escrow’s state to
SUCCESS;

5) call to withdraw().

This violation is due to a missing pre-condition in function
invest () (Line[T3]in Fig. [2b) which would prevent calls after
the crowdsale has ended. This shows that counter-examples
in stateful contracts can be deep, going beyond the reach of
existing symbolic execution tools (with their default depth
limit of 2). In fact, in Fig. [} we see that both Mythril and
Manticore (which unroll multiple transactions) fail to discover
the violation with a 5 hours timeout limit and a depth limit
set to 5. Oyente discovers the bug due to imprecise modeling
of EVM and not due to supporting precise exploration up
to depth 5 (as shown in the false positive for ¢r1). VERX
correctly fails to verify this property and outputs exactly the
sequence of transactions listed above as a possible violation.
As we show in our evaluation, once the missing pre-condition
is added, VERX successfully verifies ¢ra.

Inferring invariants using abstraction. Property ¢grs is
non-inductive. To verify it, VERX needs to infer an in-
variant that holds over all reachable contract states. In this
example, the invariant is constructed out of the following
atomic predicates: now > closeTime, raised < goal, and
sum(deposits) < raised, where the first two predicates
come from function pre-conditions. VERX extracts these and
other predicates from the code and the property. To com-
pute the needed invariant, VERX uses delayed abstraction
(explained shortly) where the abstraction step is applied only

at transaction boundaries. This delay is needed to verify prs
because the predicate sum(deposits) < raised is violated
between Line [T6] and Line [I7] in the crowdsale contract. That
is, standard predicate abstraction would fail to verify ¢rg with
these predicates, while delayed predicate abstraction succeeds.
Delayed predicate abstraction is explained in Section

III. VERIFICATION FLOW OF VERX

We now describe the verification flow of VERX (illustrated
in Fig. 5) and discuss how it addresses key technical chal-
lenges. The input to VERX consists of one or more contracts
(we call these a bundle of contracts) together with a (temporal)
safety property . For illustration purposes, we assume we are
given one contract C' with functions {f1,..., fn}.

Verification by reduction. First, to verify a temporal prop-
erty of interest ¢, VERX processes C' and ¢ so to pro-
duce an instrumented contract C,,y and a new property 0/,
where O is the always quantifier and ¢’ is an assertion
over the global blockchain state. For example, it converts
PR3 = D(claimRefund() — ﬂ’(sum(deposits) > goal))
into O(claimRefund() — —py), where p, tracks whether
sum(deposits) > goal has been satisfied in the current or the
past states of the contract. This approach of reducing temporal
property verification to a reachability check was successfully
used in prior work (e.g., [26], [28]]). A key benefit is that it
enables VERX to leverage existing analysis techniques, such as
symbolic execution and predicate abstraction (described next)
to verify that O¢’ holds on the instrumented contract Cy,s (and
as a result that ¢ holds on the original contract C).

Verification of inductive properties without abstraction.
As stated, the contract’s functions are run in an infinite loop:

1 while true
2 (user, func, args) := //
3 run func(args) as user

arbitrary

Each iteration corresponds to the execution of a single transac-
tion, constructed by any user who decides to run an arbitrary
contract function with arbitrary arguments. Since this loop is
infinite and the number of transactions that users may initiate
is unknown in advance, we cannot directly apply symbolic
execution (SE) to verify that ¢’ holds on the instrumented
contract (as SE requires loops to be bounded). That is why

we first attempt to verify ¢’ inductively: assuming ¢’ holds
before f; is invoked (pre-condition) with symbolic arguments
and a symbolic user, we check whether ¢’ holds after f; has
completed (post-condition). If the inductive check holds for
every function f; and if ¢’ holds on the initial state then
we conclude that O¢’ holds on Cy. If the above check
fails, however, ¢’ may still hold for C./. Conceptually, this
means we need to strengthen ¢’ while ensuring that it over-
approximates the reachable states of Cl,.

Verification with delayed predicate abstraction. To over-
approximate the reachable states of C/, VERX uses a com-
bination of predicate abstraction and symbolic execution to
perform delayed predicate abstraction. The idea is to analyze
each transaction fully with symbolic execution and abstract
only the states where ¢’ is meant to hold, namely, those
appearing at transaction boundaries. The abstraction is done
using the predicates automatically extracted from the contract
C and the original property ¢.

We iterate this procedure in a classic fixed point iteration
loop. First, we initialize the set reach(C.) of abstract states
reachable at transaction boundaries with the abstraction of the
concrete initial state. Then, we simply follow the outer while
loop and non-deterministically select a function f; to invoke;
we execute f; symbolically (assuming symbolic arguments and
a symbolic user) and compute the precise symbolic state s at
the end of the transaction. Technically, s is a disjunction of
constraints p; V- - -Vpy, each p; capturing a possible path of the
function’s k paths. After computing s, VERX abstracts each
p; € s into an abstract state «;. This results in a set of new
abstract states o,...,Q, which are added to reach(C.,).
Note that m < k, as the symbolic states of two paths may
become abstracted to the same abstract state.

Despite the infinite outer loop, VERX is guaranteed to reach
a fixed point since the predicate abstraction domain is finite
(due to the finite number of abstract predicates). The over-
approximation of the reachable states of C, is given by the
disjunction o V- - -V ay of all abstract states in the fixed point
reach(C,). To verify the property, VERX checks whether
the fixed point logically implies the desired property ¢’. If
yes, we conclude that Oy’ holds on C,. Otherwise, VERX
attempts to construct a counter-example. In doing so, it either
succeeds and outputs the counter-example or fails and asks
the user to provide additional predicates. We note that one
could implement standard abstraction refinement techniques
to automate predicate discovery [25]].

IV. SYSTEM MODEL

In this section we provide background on the Ethereum
blockchain and formalize its behavior. We then formalize the
notion of bundle behaviors VERX reasons about.

A. Ethereum Overview

The Ethereum blockchain is a distributed storage that
supports two types of accounts: user accounts and contract
accounts. User accounts are the entry-points through which

::= (External txn)”
(Internal txn)
(Message) [{Command)™]

(Recipient, Sender, Value, Data, Gas)
Lo

(Execution

(External txn

(Message

)

)
(Internal txn) ::

)

)

(Command) :: ad | Store | Local | (Internal txn)

Fig. 6: An execution is a sequence of external transactions
each nesting one or more internal transactions. Each internal
transaction starts with a message and proceeds in a sequence
of commands. Commands may load or store data from and to
the private storage, perform local computations (not affecting
the storage), and initiate nested internal transactions.

Behavior £ MState® MState £ BState x Frame®

BState £ Address — Program x Storage x Value

Frame £ Message x Program x Memory x Gas

Program £ Code Recipient £ Address Data £ Word*
Storage £ Byte™™™ Sender £ Address Gas £ Word
Memory £ Byte™™ Value £ Word Address £ Word

Fig. 7: An EVM behavior is a sequence of machine states,
represented as pairs holding a blockchain state and a stack of
frames, one per nested internal transaction.

users interact with the system by submitting transactions. Con-
tract accounts (or simply contracts) are autonomous objects
that process transactions. Every contract is associated with a
program that executes incoming transactions, and a private
storage for persisting data across transactions.

An execution of the Ethereum blockchain is a sequence of
external transactions, as defined in Fig. @ Each transaction
is initiated with a message that defines the addresses of the
recipient and sender accounts, a value of ether (possibly zero)
to be transferred from the sender to the recipient account,
(possibly empty) data, and a gas value. If the recipient is
a user account then the data is empty and the transaction
results in transferring the ether value from the sender to the
recipient. Otherwise, the recipient is a contract, and the data
identifies a function of the contract’s program together with
arguments passed to the function. Upon the reception of such
a message, the contract’s program is executed by the Ethereum
Virtual Machine (EVM) [66], modifying the contract’s storage
accordingly. The execution of each command, such as a
storage write, is associated with a gas fee and the execution
aborts if the accumulated gas fees exceed the gas value.

A contract’s program can create messages to start transac-
tions on other contracts, which in turn can do the same. These
transactions behave like a standard procedure call, meaning
the caller waits for the callee to complete. The calls have
transactional semantics and are termed internal transactions.
Since procedure calls nest, this leads to a nested transactional
model: aborting the current internal transaction undoes its

effects on the storage, including the effects of all nested (child)
internal transactions. The top-level transaction initiated by the
user together with all nested transactions form an external
transaction. Finally, an execution of the Ethereum blockchain
is a sequence of such external transactions.

To illustrate this model, consider that account user calls
function close () of the crowdsale contract in Fig. [2] which
in turn calls function close() of the Escrow contract. The
corresponding external transaction is given by

(Crowdsale, User, 0, close (), 200000)[

(Escrow, Crowdsale, 0, close(), 129275)[.]

]

Here, we omit all non-calls (indicated by - - -). This transaction
consists of two messages. The amount of ether in both
messages is set to 0, indicating that no ether is transferred
when processing the transaction. The value 200 000 in the first
message is the amount of gas provided by user for processing
the transaction. The gas in the second message (129 275) is
lower as reaching the call to the escrow costs 70 725 gas.

B. Ethereum Behaviors

A behavior of the EVM is the sequence of machine states
the EVM goes through during execution. The EVM state of the
EVM is formalized in [|66[], of which we provide a schematic
description in Fig. [/l A machine state is a pair holding the
blockchain state, and a stack of frames, one per active nested
internal transaction.

o The blockchain state collects all account data and is a
mapping from account addresses to account states. The
figure shows only contract accounts, whose state consists
of the contract’s program, storage, and balance (values).

o A frame contains: (1) the message used to activate the
call, (2) the next program fragment to be executed (i.e., a
program counter), (3) the call’s local scratchpad memory,
(4) the remaining gas available for execution.

The EVM operates on 32-byte words. All numeric values (e.g.
addresses) are represented as unsigned integer words. Contract
storage and frame memory are word-addressed.

C. Bundle Behaviors

The requirements of a bundle C of contracts constrain its
EVM behaviors. Given an EVM behavior, we obtain the
behavior of the bundle by extracting the sequence of pairs
(T,b) where T is a transaction whose recipient is in the
bundle C and b is a blockchain state that captures the effects
of T. As discussed in Section [II-Bl we follow the well-
established approach in the field of concurrency and extract
behaviors of C only from EVM behaviors without external
callbacks (i.e., without concurrency). Thus, our specifications
do not directly constrain all possible EVM behaviors but only
those where transactions run isolated from external callbacks.
The remaining EVM behaviors are controlled by imposing a
generic correctness criterion [38] on the bundle C.

Definition 1. A C-entry transaction in an EVM behavior
is a transaction executed by a contract in C whose parent
transaction, if present, is executed by a contract not in C.

For example, in the EVM behavior in Fig. 3| the transactions
Escrow.claimRefund (p) and Escrow.claimRefund (qg) are C-
entry transactions: the first one is an external transaction
that executes contract Escrow and does not have a parent
transaction; the second one executes contract Escrow and its
parent transaction is executed by a contract p ¢ C outside the
bundle C = {Escrow, Crowdsale}.

We call an EVM execution C-external callback-free if it
contains no C-entry transaction nested in another C-entry
transaction. For example, the behavior shown in Fig. [3] is not
C-external callback-free because Escrow.claimRefund(q) iS
nested inside Escrow.claimRefund (p).

Let msg(7T) be the message that initiated T', and let post(T)
stand for the blockchain state at the point when 7" finishes.

Definition 2. The bundle behavior of C corresponding to a
C-external callback-free EVM execution is the sequence that
records the pair

(msg(T), post(T))
for every C-entry transaction T in the EVM execution.

That is, for every transaction 7', the behavior records the
transaction message and the blockchain state at the end of T’
but restricted only to contracts in the bundle C.

Effective external callback freedom. The criterion that we
impose on bundles requires that all EVM behaviors are in a
certain sense equivalent to C-external callback-free executions.
We adapt the effective callback freedom criterion of Grossman
et al. [38] to our setting where the internal callbacks within
a C-entry transaction are thought of as executing sequen-
tially. Both, our criteria and [38]], are variants of conflict-
serializability [52]. For brevity, we do not state the actual
criterion but a necessary and sufficient condition. As standard,
we formalize the condition by first constructing a directed
graph (digraph) that captures dependencies between operations
and then requiring that the resulting digraph is acyclic.

Definition 3. The C-serialization digraph of an EVM execution
has a vertex for every C-entry transaction and an edge (S,T')
Sor all operations s of S and t of T (S # T) such that:

1) s precedes t in the EVM execution, and
2) at least one of s and t modifies part of the blockchain
state that is read or modified by the other.

Intuitively, each edge (S,T) indicates that the blockchain
state after 7' depends on S being executed earlier. C-entry
transactions not involved in circular dependencies are not
logically interrupted by callbacks outside the bundle.

Definition 4. A bundle C is effectively external callback free
if all EVM executions have acyclic C-serialization digraphs.

V. PROPERTY SPECIFICATION LANGUAGE

We express properties of bundle behaviors using past linear
temporal logic, or Past LTL for short. We provide a brief
introduction below, for further details please refer to [48].

Linear temporal logic. A formula in Past LTL is inductively
defined as either an atomic formula A, or a logical or temporal
connective applied to one or more formulas ¢, :

ppu=A | oV | mp | @0 | pSY

A formula can be interpreted at any position in a bundle
behavior. Atomic formulas directly refer to the message or
blockchain at the current position. For example, the formula
withdraw () holds when the current transaction was a call to
the withdraw() function. The formula from Fig.

Sum(deposits) < Escrow.balance

holds when in the current state the sum of values of the
deposits mapping is less than or equal to the balance of the
Escrow contract. Boolean connectives are interpreted in the
standard way. For the temporal connectives

o previously @y evaluates ¢ in the previous state if such
exists and returns false otherwise;

e since p S 1 looks for a nonfuture moment when v holds
so that ¢ holds in all moments after, up to the present.

The since connective can define other useful connectives
like once 4 (is/was true) and still B (is/has always been true):

¥ETSY W) =)

Given a Past LTL formula ¢, the O¢ formula uses the
always connective 0O and states that ¢ must hold at all
positions of the bundle behavior.

Conversion to non-temporal formulas. Past LTL formulas
are sufficiently expressive to capture any safety property, yet
they are equivalent to assertions, i.e., non-temporal formulas.
This allows us to convert them to assertions and reuse standard
safety verification techniques.

To convert a Past LTL formula ¢ to a non-temporal one, we
encode the semantics of past connectives into the behaviors of
the contract. That is, we introduce auxiliary variables that track
the truth values of temporal subformulas in ¢, a well-known
method [54].

We demonstrate this method with an example. Consider the
temporal formula prs = O¢ from Fig. 2}

@ = claimRefund () — ﬁ’(sum(deposits) > goal).

First, we select a subformula whose top-level connective is
temporal. Only one such subformula is present in our example:

P = ’(Sum(deposits) > goal).

Then, we introduce a fresh variable py that tracks 1)’s truth
value, and update it according to the semantic rule of ¢:

pil} = (Sum(deposits) > goal) V Dy -

Finally, we rewrite ¢ to the non-temporal formula:

@ = claimRefund () — 1Py

Property syntax. To allow auditors and developers to specify
properties, we extend Solidity’s syntax with temporal quanti-
fiers. For example, we denote the operators

o always O by always,

e once ¢ by once, and

¢ previously @ by prev.
For convenience, we also provide aggregate functions over
mappings, denoted by sum(deposits). The properties can
further refer to the latest transaction’s data, including its
signature and arguments. We use Solidity’s syntax for logical
connectives and expressions (e.g., users write s& for A) and in-
troduce implication (==>) which is often used in properties.

VI. DELAYED ABSTRACTION FOR VERIFICATION

To verify a Past LTL specification of a bundle of contracts C
we apply abstract interpretation over a symbolic domain.
We employ predicate abstraction [35] but without the usual
conversion to boolean programs. Our approach is similar to
that of Flanagan and Qadeer [32] where two transformers are
alternated: precise symbolic transformers to handle individual
commands, and an imprecise transformer to ensure conver-
gence. In contrast, classic abstraction applies an imprecise
transformer at every step. Hence, we call the precise/imprecise
approach delayed abstraction.

VERX receives a bundle C of contracts (written in Solidity)
and a Past LTL specification O that should hold for all
behaviors of the bundle. First, it converts the Past LTL
specification to an assertion (Section . Thus, at this point,
we assume that ¢ is an assertion. Then, VERX compiles all
contracts in C to EVM bytecode [66]], and then it performs
abstract interpretation on the bytecode. We compile to EVM
because it is much simpler than Solidity.

To keep the discussion concise, we assume the bundle C is
described by the blockchain address of its contracts together
with two programs:

1) initc—a deterministic program that produces the initial

blockchain state in every behavior of the bundle;

2) step,—a program that non-deterministically executes a

transaction of C starting in a given bundle state.

Given the property ¢ and the compiled code of C, VERX
tries to verify the following program:

initc; assert ¢; while true { step;; assert ¢ }

Ignoring the assertions, this program produces all possible
behaviors of the given bundle of contracts C.

This verification problem amounts to proving that ¢ holds
for all message-state pairs (m,s) appearing in behaviors
of C. Recall that the behaviors of a bundle were defined
in Section [IV] This set of pairs is called the concrete semantics
of C, which we denote with Sem(C). Thus, our goal is to
verify:

Sem(C) = ¢. (1)

A. Abstract Interpretation

As the concrete semantics can be infeasible to compute,
establishing directly is not possible except for restricted
cases. Abstract interpretation [27] addresses this issue by
soundly approximating the concrete semantics with an abstract
semantics Sem#(C) for which the verification problem is
easier:

Sem™(C) |= . (2)

Sound approximation means that the set (Sem” (C)) of all
message-state pairs encoded by the abstract semantics extends
the concrete semantics:

Sem(C) C ~v(Sem™(C)).

Then, because of soundness, proving (2)) implies that (1)) holds.
To compute the abstract semantics by abstract interpretation,
one mimics how the concrete semantics is computed as an
element of the powerset lattice C = P(S), where S is the set
of all possible message-state pairs, including those that do not
appear in the behaviors of the bundle C. We reinterpret the two
programs that describe the bundle as concrete transformers:
initc € C stepe : C — C.
The concrete semantics Sem(C) is simply the least fixed point
of the monotone map

S+ inite U stepe(.9).

To compute Sem#(C) by abstract interpretation, we first
replace the concrete domain C with an abstract domain A,
where the two are connected by the concretization function

v:A—C.
We then define abstract transformers instead of concrete ones:
init? € A stepy : A — A.

To mimic the concrete computation, we equip the abstract
domain A with a lattice structure, that is, a join operation L.
This allows us to define the abstract semantics Sem#(C) as a
fixed point of the map

A initﬁﬁ U step#(A).

As a result, we obtain a sound approximation provided the
abstract transformers are sound. That is, for all A € A:

inite C y(initd) stepc(y(A)) C y(stepy (A)).

Fig. 8] summarizes the abstract interpretation approach. To
model non-determinism more precisely, we use a powerset
domain A, that is, the elements A € A are sets of elements of
another domain. The concretization function then is:

: Input
C A bundle of contracts.
¢ A non-temporal formula.

1
2
3
4: procedure VERIFY(C, ¢)

5: A <+ FIXPOINT(A — initc# W step?(A))
6 for all a € A do

7 if a [~ ¢ then

8 report a and exit.

9 end if

10: end for

11: report ¢ holds.

12: end procedure

Fig. 8: Verification via a powerset domain.

B. Delayed Abstraction

We now discuss the particular abstraction used in VERX.
We apply what we call a delayed abstraction, an elegant idea
which first appeared in [32]]. Delayed abstraction addresses
imprecision in reasoning about invariants that are broken at
intermediate points of the program. For smart contracts this
typically occurs when a transaction temporarily breaks its
invariant inside and then restores it at the end of its execution.

To deal with imprecision, delayed abstraction simply delays
the abstraction step until the end of the transaction, but
employs a precise symbolic domain ¢ to reason within the
transaction. Because fixed point computation in the precise
domain might not converge, at the end of the transaction, a
switch is made to a less precise predicate abstraction domain
A = P(PA) where PA C ®. Thus, the abstract transformer
first makes a precise symbolic execution step, and then a
predicate abstraction step:

SE(/)

(07

A P(®) A.

To perform symbolic execution, the symbolic domain &
consists of first order formulas with message-state pairs (m, s)
for models. That is, for every ¢ € ®

V(W) ={(m,s) : (m,s) |= ¢}

The only restriction to the formulas in ® is that an SMT
solver should be able to handle them. The SE(f) step starts
with a set of formulas A € A and for each formula ¢ € A,
it symbolically executes all feasible program paths in f €
{initc, stepc}. The result of processing v is a set of formulas
{Y1,...,9,} (one per feasible program path) that give the
strongest postcondition of f with respect to 1):

v(_\/ W) = f(v(¥)).

The result of processing all formulas in A, as described
above, is an intermediate set S € P(®P) of formulas.

For delayed abstraction, we use a set PA of cubes [35]
which are conjunctions of literals over a fixed set of basic
predicates P = {Py,..., P,} C ®. The abstraction step

a:d—PA

projects each formula ¢’ € S onto PA:

a(w) = AL eA:y' =L},
where A is the set of all literals over the set P. The result of
processing the set S results in a set of cubes that is an element
in the domain A.

An important part of predicate abstraction is choosing the
set P of basic predicates. If one does not find the right set P,
the computed abstract element will be sound, but might be too
imprecise to prove the desired specification . Typically, one
seeds P with all atomic subformulas of the specification. If
verification fails with this set, we increase P automatically by
extracting predicates that appear in the program. We define
the types of predicates we extract from the program and
give examples where they bring sufficient precision to prove
realistic properties in Section If verification still fails,
we ask the user to provide additional predicates (in principle,
one could extend the system to perform standard abstraction
refinement so to automatically discover predicates).

VII. PRACTICAL SOLIDITY FRAGMENT

The effectiveness of delayed abstraction relies on a precise
symbolic execution engine that scales to realistic contracts.
Building such an engine for arbitrary Solidity contracts is,
however, challenging due to the Turing-completeness of the
language. In this section, we define a practical fragment of
Solidity that covers a wide range of real-world contracts yet
enables precise and scalable symbolic execution. We summa-
rize the restrictions in Fig. [0 and explain them in detail below.

A. Loops and Recursion

Symbolic execution fails to terminate when a program
contains unbounded loops or recursion. In Ethereum, however,
long transaction executions are costly (since they consume
more gas) and moreover cannot exceed the block’s gas limit,
which imposes a hard bound on the gas budget of transactions.
Because of this, unbounded loops and recursion are considered
anti-patterns.

In our fragment, we consider Solidity contracts without
recursion and where loops are bounded. Such contracts have
finitely many paths which can be fully analyzed symbolically.
To further extend our fragment, we also support the following
common loop pattern in Solidity:

1 function pm(Arg[] args) {

2 for (i = 0; i < args.length; i++) {
3 f(args[i]);

4 }

5 }

We call this loop pattern packed-calls, as the loop is merely
used to group multiple independent calls to the function £
in a single transaction. For the purpose of verification, such
loops can be eliminated without changing the semantics of the
bundle. That is, any transaction invoked with multiple elements
in args can be split into multiple transactions to pm:

.pm([an]) . (3)
VERX automatically detects and soundly bounds such loops.

pr(far, ..., an]) = pm(far)) ..

Restriction

Type

Loops
Recursion

Loops are bounded or match the packed-calls pattern
No recursion allowed

External calls Must satisfy effective external callback freedom
Gas exceptions Gas exceptions propagate to the external transaction
Storage access

Restricted
behaviors

No direct access to storage via assembly

No execution of external code
No creation or destruction of contracts

Fig. 9: Solidity fragment supported by VERX

B. Calls to External Contracts

The Ethereum blockchain permits a bundle contract ¢y to
call an external contract d, and then contract d to call back
some bundle contract cs:

c1€C—dgC—cyel. “)

The external contract d can potentially make an unbounded
number of callbacks to the bundle (until all gas is depleted),
making it infeasible to fully analyze with symbolic execution.

To address this challenge, we consider only contracts that
satisfy the effective external callback freedom condition de-
fined in Section[IV-C| This condition implies that any behavior
of the contracts with external callbacks is equivalent to a
behavior without external callbacks. We defined the check used
to determine whether a smart contract satisfies this condition
in Section

C. Gas Exception Propagation

If an internal transaction consumes all gas allocated to it,
then it terminates with an “out of gas” exception, undoing all
changes to the shared storage. After that, execution resumes
in the parent transaction. Since the amount of gas can be
arbitrary, the above behavior implies that most calls are a
potential branching point where the call can be omitted. These
branching points explode the number of program paths to be
symbolically executed.

We avoid this explosion by requiring contracts to propagate
all exceptions up the call stack, effectively reverting the current
bundle transaction. This means that the transaction will not
appear in the blockchain execution and can be ignored.

D. Storage Access

As mentioned in Section [VI, we do not analyze Solidity
directly but the EVM bytecode obtained by compiling Solidity
code. The challenge with EVM bytecode is that it is low-
level and important information is lost during compilation.
The major challenge comes when reasoning about compound
objects such as structures, arrays, and maps. The EVM lacks
primitives for such objects, and consequently, all arrays and
maps are spliced together into a single flat array of 22°6 words.
Therefore, to reason about compound objects, we need to
reason about the specific hash-based allocation scheme used
by the Solidity compiler.

To illustrate the scheme, consider an array a that holds
objects of size m. The array gets a unique identifier id(a),
and its elements are distributed according td'}

ali] — sua-3(id(a)) + n * i

That is, the array is allocated at the address that equals the
SHA-3 hash of its identifier and spans the subsequent words.

The allocation scheme must be valid in the sense that
distinct objects are allocated disjoint storage. This validity
rests on two conditions, which are required to model in order
to analyze array and map accesses precisely:

1) There are no SHA-3 collisions to guarantee that distinct

objects and map elements start at distinct addresses.

2) SHA-3 hashes are sufficiently spread apart so that dis-

tinct objects do not overlap.

These two conditions are assumed to hold for any Solidity
contract. They can, however, be violated if a contract directly
accesses storage using inlined assembly. To this end, we
restrict the use of inlined assembly in bundle contracts.

E. Unsupported Instructions
Finally, in our fragment we ignore contracts that:

1) Execute external code in the context of the bundle
contracts (instructions CALLCODE OF DELEGATECALL).

2) Destroy bundle contracts or create new ones (instruc-
tions CREATE and SUICIDE).

Execution of external code is known to entail a security risk.
For example, attackers can execute arbitrary code if they
gain control over the destination address of a DELEGATECALL
instruction. Due to these security risks, these instructions are
considered a bad practice and are excluded from new bytecode
proposals that aim to improve the security of the EVM [44]].
Creation and destruction of contracts can be supported but is
less common and we omit these behaviors for simplicity.

VIII. THE VERX SYSTEM

We now present details on our VERX system: the new
symbolic execution engine, the types of predicates extracted
from contracts, and optimizations used to scale verification.

A. Symbolic Execution Engine

VERX uses a new symbolic execution engine for EVM,
which avoids the pitfalls of existing engines, as detailed in
our evaluation (Section [X-DJ). Our symbolic execution engine
extends standard techniques [19]], [45] with the following
unique features of Solidity: (i) object allocation in Solidity (de-
termined by hash functions), (ii) contract calls, and (iii) sound
approximation of gas mechanics. We also model sums of
arrays and mappings, which although not part of Solidity are
needed for verifying relevant properties.

Symbolic state. We perform symbolic execution with
Z3 [31]]. Machine words in the symbolic state are encoded

!For simplicity, we assume that n = 256. The storage address is computed
using a more complex formula if n # 256; cf. [8].

precisely as 256-bit vectors. EVM storage and memory are
encoded in the theory of arrays. Calls to external contracts are
modeled with uninterpreted constants.

Checking effective external callback freedom (EECF). We
check that all contracts in the bundle satisfy EECF through a
proxy pattern. The pattern forbids:

1) Writing to the bundle’s blockchain state after calls to
external contracts. Example writes include transferring
ether or writing values to storage variables;

2) Reading the bundle’s blockchain state after calls to ex-
ternal contracts with > 5000 gas. Example reads include
accessing a contract’s balance or storage variables.

The latter condition allows reads for calls to external contracts
with < 5000 gas since such calls guarantee that the callee
cannot, due to the limited gas budget, modify the bundle’s
blockchain state. We note that such calls are common because
Solidty’s statements send and transfer are frequently used
by developers to transfer ether to other contracts and these
provide 2300 gas to the callee.

Checking exception propagation. Standard function invo-
cations in Solidity automatically propagate exceptions. Only
low-level calls such as send and call do not propagate
them. To check that the caller propagates exceptions, we
perform dataflow analysis to verify that the contract always
reverts the state when such a call fails.

Modeling object allocation. As mentioned, a unique aspect
of Solidity/EVM is the hash-based allocation scheme used to
determine the location of an object in the storage by applying
the SHA-3 hash function. The challenge here is that SHA-3
is a rather complex function and if we model it precisely with
SMT constraints, we would cripple the symbolic execution.

To this end, we interpret SHA-3 as a different, much simpler
function, that still ensures the two assumptions mentioned
above, namely no hash collisions and sufficiently spread-
out hashes. This approach is sound provided that the smart
contracts we verify always access memory through Solidity’s
primitives, that is, they never access raw memory directly. We
ensure this memory access by forbidding the use of inline
assembly in the Solidity source.

We encode the simpler function with the function symbols

SHA-3,, : {0,1}" — {0,1}2°¢,

one per input size » to a SHA-3 invocation in the bytecode.
We encode the expected behavior of the function with extra
SMT constraints. Importantly, the constraints do not specify
the function completely. That is, we assume little about the
function, and the VERX verification results hold for any
function that satisfies those weak assumptions.

(i) The first set of constraints ensures that no collisions
occur. No collisions in principle means that the union of all the
functions SHA-3,, is one-to-one. This is, of course, impossible
since the domain of the function is larger than its codomain.
That is why we do not ensure injectivity on its whole domain.
Instead, we consider each symbolic execution separately and

ensure injectivity only on the (possibly symbolic) arguments
that appear in the execution. To do that, let X,, be the
arguments applied to SHA-3,,. We add the constraints:

1) No collisions within each X,,:

/\ sHA-3.'(SHA-3,(z)) = 2. (5)
rzeX,

Here, SHA-3, ! is a function symbol that represents a
pseudo-inverse function of SHA-3,,.

2) No collisions between each X, and X, for sufficiently
many pairs m # n of distinct input sizes:

/\ Ln < SHA=3,(z) < Ry, (6)
reX,

The numbers L; < R; divide the address space into
disjoint intervals [L.,, Rp,] N [Ly, Ry = @.
In our experiments, we set concrete bounds L;, R; that are far
apart from each other, giving intervals of length 2190,
We used the above constraints instead of the prosaic

x #y = SHA-3,,(z) # SHA-3,(y).

because they are linearly many in the size of the union U; X;
instead of quadratic. In our experience, this reduced the load
on the SMT solver significantly.

(i1) The second set of constraints ensures that hashes are
spread apart. For every set X,, we add the constraints

/\ SHA-3,(z) =0 (mod S), @)
rzeX,

where S is sufficiently large (64 in our experiments).

Calls. When the engine reaches a call, it checks whether the
address being called is concrete or symbolic. If it is concrete,
the execution continues by transferring the given (possibly
symbolic) value of ether and then checks whether the address
is in the bundle. If so, this is a contract account, and we model
the call precisely, activating the contract’s program in a new
frame. If the concrete account is external, then we treat it as
a user account, meaning no further action beyond a transfer is
taken (as mentioned, this treatment is sound when the bundle
contracts satisfy effective external callback freedom).

In the case where the address being called is symbolic, the
execution first non-deterministically selects the address of a
bundle contract or treats the symbolic address as an external
user account. After that, the execution proceeds as before.

Gas mechanics. The engine implements gas mechanics to
terminate symbolic execution along infeasible paths, where
an out-of-gas exception is guaranteed. Concretely, the engine
tracks a lower-bound gj,ye- On the gas cost of each symbolic
path. We note that we cannot track the precise gas cost simply
because the gas fees for some operations depend on their
arguments, and therefore the concrete executions that follow a
symbolic path may have different gas costs. The engine also
tracks the gas budget gy q4q4e: specified in the message initiating
the call. There are two common cases for the gas budget: (1)
it is often unbounded, as it is specified by the user, and (2) it

is a constant, for calls initiated by send and transfer which
always provide 2,300 gas to the callee. Finally, our engine
considers any paths where giower > Goudget as infeasible, as
they are guaranteed to revert due to an out-of-gas exception.

Tracking sums. Another feature of our engine is to track the
sums of arrays and mappings with numeric values. Although
these sums are not a feature of the EVM, they enable to specify
important properties (e.g., Fig. 2). The sum of an object a is
kept in a designated variable sum(a) in the symbolic store.
For each write ' = a[z — y], the sum changes as:

sum(a’) = sum(a) — a[z] +y.
B. Extracting Predicates

Delayed abstraction needs a sufficient set of predicates to
successfully verify properties. Based on our experience in
verifying contracts (see Section [[X), we identify five important
kinds of predicates:

1) Property: atomic formulas from the property. For exam-
ple, yr1 (Fig. has two atomic formulas: state #
success and Sum(deposits) < Escrow.balance.

2) Points-to: encode pointers to contract instances. For our
motivating example, we extract predicates that capture
that escrow points to the escrow instance, and its field
owner points to the crowdsale instance.

3) Enum/Bool: encode values of boolean and enumerated
fields. For our motivating example, we extract three
predicates to encode the value of variable state.

4) Constant: encode values of constant variables. For our
motivating example, we extract goal = 10000 x 10'8,

5) Other: predicates defined by users.

VERX automatically extracts all predicates, except those
classified as Constant and Other, by traversing the contract’s
abstract syntax tree (AST) to detect contract fields of type
boolean, enum, or contract, and defining predicates to capture
their values. For a boolean field b, VERX adds the predicate
b = True. For an enum field e, VERX finds its size n and adds
the predicates e = 0,...,e = n — 1. For example, for variable
state from Fig. d), VERX adds the predicates state = 0,
state = 1, and state = 2. For a contract field ¢ of type
t, VERX adds the predicate ¢ = t. This predicate captures
the type of c, and also serves as a points-to predicate: in our
benchmarks, there is one instance per contract type, and thus if
the predicate ¢ = ¢ holds, then VERX infers the exact instance
of c. In the future, we plan to extend VERX with points-to
analysis to improve precision for more complex cases.

C. Abstraction of non-linear arithmetic

To further scale the analysis, VERX supports abstraction of
non-linear arithmetic. Non-linear arithmetic poses a challenge
to SMT solvers, yet it is unnecessary to prove many real-
world properties. That is why VERX has the option to abstract
non-linear computations (e.g., multiplication) by substituting
them with uninterpreted functions. The user of the system can
disable or enable the abstraction whenever needed, speeding
up the analysis for the majority of cases.

IX. EVALUATION OF VERX

We now present our evaluation of VERX on real-world
Ethereum projects. We focus on three key questions:

1) What types of safety properties are common for real-
world contracts?

2) How effective is VERX in verifying safety properties of
these smart contracts?

3) How precise is the symbolic execution engine of VERX
compared to existing symbolic tools for Ethereum?

All of our experiments were run on a server with Intel i7-
6700 CPU with 4 cores at 3.4 GHz, 64 GB memory, running
Ubuntu 18.04.2 and Python 3.6.

A. Benchmarks and Properties

We now report on our benchmarks and the common types
of requirements that we formalized. All our benchmarks are
available at https://github.com/eth-sri/verx-benchmarks|

Benchmarks. Our benchmarks consist of the overview exam-
ple (Fig.2) and 12 real-world Ethereum projects. Most of these
projects are deployed on Ethereum and have over 500 lines of
Solidity code. We provide relevant statistics in Table |II The
prevalence of crowdsales and tokens in the benchmarks reflects
that many of the real-world deployed Ethereum contracts are
of these types. We note that some of the verified contracts
hold a significant amount of funds (> 100M worth of USD).

For each project, we wrote a deployment contract to define
the initial state of the project’s contracts. As mentioned, some
of these projects have been professionally audited by experts
where any property violations have been fixed. Our results use
the fixed versions where all properties verify.

Properties. The typical process to elicit properties is to
inspect the documentation and to formalize key requirements.
To provide an insight into the types of common requirements,
we classify them into five distinct categories and show these in
Table |[I} along with concrete examples from our benchmarks:

1) User-based access control requirements define which
users can invoke critical functions. The example in
Table taken from the Crowdsale project (part of
Zeppelin’s projects), stipulates that only the primary (a
specific user address) can invoke function deposit. We
note that attribute-based authorizations, such as “only
users with more than 1000 tokens can calls function foo”
are also supported and common.

2) State-based properties define at which states certain
authorizations and invariants must hold. The example
in Table taken from the VUToken project, permits
calls to function withdrawTokens after the closing time.

3) State machine requirements define which state tran-
sitions of the contracts are allowed. To track state,
contracts often have explicit state variables. These
properties often involve temporal quantifiers (e.g., once).
The example in Table taken from the ICO project,
stipulates that once the contract is in state Refund, it
cannot transition to state Finalized, and vice versa.

Project Type # Contracts # Func. #Ifs LOC
Overview Crowdsale 3 7 1 66
Alchemist Exchange 6 31 2 401
Brickblock Token 9 36 4 549
Crowdsale Crowdsale 20 86 2 1,198
ERC20 Token 6 37 1 599
ICO 1CO 14 51 13 650
Mana Crowdsale 18 66 4 885
Melon Token 5 35 2 462
MRV Token 7 49 11 868
PolicyPal Crowdsale 10 40 10 815
VUToken Crowdsale 19 70 4 1,120
Zebi Crowdsale 12 99 9 1,209
Zilliqa Token 9 31 4 371

TABLE I: Statistics on Ethereum projects.

4) Invariants over aggregates: Contracts often store state in
mappings. Since Solidity does not allow contracts to iter-
ate over the keys of a mapping, contracts often store state
in auxiliary variables to track aggregate information.
Invariants over these help establish their correctness. The
invariant in Table[[I} taken from the MRV contract, states
that the sum of balances always equals the total supply
of tokens, a common token requirement.

5) Multi-contract invariants: Finally, contracts often im-
pose invariants over the bundle of contracts in the
project. The example in Table[[l] taken from the MANA
project, states that if the continuous sale has not started,
the owner of the token is the crowdsale contract.

B. Verifying Contracts using VERX

We now report on the effectiveness of VERX in verifying
our benchmarks. We present our results in Table VERX
successfully verified all 83 properties we considered.

To present our results, we split the properties based on
whether they are verified inductively or using abstraction. For
each property type, we show the number of verified properties,
the average number of symbolic states, and the average execu-
tion time in seconds. For properties verified with abstraction,
we show the total number of predicates required to verify all
properties. For example, the 3 properties of project Brickblock
are verified with abstraction, and we report 3 Enum/Bool
predicates because each property required 1 boolean predicate.

Our results illustrate several important points. First, 20% of
properties can be verified inductively.

Second, the average verification time is 114 seconds for
inductive properties and 1296 seconds (=~ 20 minutes) for
non-inductive ones. Two outliers are the Mana and PolicyPal
projects, which took hours to verify some properties due to
complex constraints. To speed up VERX, one can implement
standard optimizations, such as slicing program paths that are
guaranteed to not change the abstract predicates’ truth values.

Third, the number of symbolic states demonstrates the com-
plexity of the analysis. For some properties, VERX explores
over a hundred abstract states to verify the property.

https://github.com/eth-sri/verx-benchmarks

Type Properties Description Example
. . . always (RefundEscrow.deposit (address) ==>
User-based 13 Define which users (identified by ad- ys (msg. sender —= pRe fun(dEscrow) cimary))
access control dress or attributes) can invoke certain g- P Y
functions
. . always (ICOCrowdsale.withdrawTokens () ==>
State-based 44 Define invariants and access control ys (noww> Icoc:‘:;wdsalz closin()Time))
properties that must be enforced in certain states ’ g
. . e always (! (once (Escrow.state == SUCCESS
State machine 15 Define which state-transitions of the ys (H(s o(nce (E:crow ctate —— REFU)ND))
requirements contract are correct ’
. . always (MRVToken.totalS ly ==
Invariant over 8 Invariants expressed over aggregate ys(sum (MRVToken bﬁinies))
aggregates values stored in mappings and arrays ’
. . always ((MANAContinuousSale.started != true)==>
Multi)contr Invariants that span across one or mor
i(nvzrza)l’(l:t(; tract 3 Co\rllatraaéést at span across one o ore MANAToken.owner == MANACrowdsale)

TABLE II: Common types of properties encountered during audits and concrete examples taken from the benchmarks.

Inductively Verified Verified via Delayed Abstraction

Total number of predicates (all properties)
Project Verified Avg. states Avg. time (s) | Verified Avg. states Avg. time (s) | Property Points-to Enum/Bool Constant Other
Overview - - - 4 92.00 211.75 12 8 9 2 7
Alchemist 2 19.00 29.00 1 38.00 154.00 4 2 - - -
Brickblock 3 65.00 663.67 3 185.67 191.67 9 - 3 - 1
Crowdsale - - - 9 73.67 261.33 23 27 - 18 -
ERC20 - - - 9 48.00 158.33 24 - - - -
ICO - - - 8 283.63 6817.00 31 72 - 48 -
Mana - - - 4 441.75 41409.25 10 16 1 2 2
Melon - - - 16 159.38 408.38 50 - - 48 -
MRV 4 109.00 1075.75 1 128.00 887.00 3 - - 1 -
PolicyPal - - - 4 667.50 20773.50 9 8 - 12 -
VUToken - - - 5 123.00 715.40 11 5 - 33 -
Zebi 3 41.33 77.67 2 116.50 13604.00 3 3 - 2 -
Zilliqa 5 71.80 94.40 - - - - - - - -
Average 18.01 114.15 35.00 1296.84 2.86 2.14 0.20 2.52 0.15
Sum 17 66

TABLE III: Experimental results of VERX’s property verification using inductive reasoning and delayed abstraction.

Mythril Manticore

TP TN FN FP T/O|TP TN EN FP T/O|TP TN FN FP T/O | TP TN FN FP T/O

VERX Oyente
Benchmark Tests
Assertions 19| 11 7 0 1 0 0 3 10
Arithmetic 22 6 16 0 0 0 5 7 1

6 0| 7
9 0| 6

4 4 3 1 6 7 5 0 1
13 0o 3 0| 6 16 0 0 0

TABLE IV: Comparison of VERX’s symbolic execution engine with state-of-the-art symbolic tools.

Finally, 10 of the projects do not require any cus-
tom predicates to verify all their properties. This indicates
that most properties can be verified with few extra pred-
icates which are extracted automatically. The remaining 3
projects do require few predicates classified as Other. Exam-
ple predicates are Crowdsale.raised < Crowdsale.goal and
sum (Escrow.deposits)== Crowdsale.raised. We note that
such predicates often appear in function preconditions (defined
in require statements), indicating that they can be easily
extracted automatically.

C. Importance of Derived Predicates

Most of the properties in our benchmarks are non-inductive
and therefore require additional predicates to verify. We in-
spected the relevance of the predicates derived automatically
by VERX and report our findings below.

Points-to predicates. Points-to predicates are essential to
prove that the bundle contracts are effectively external callback
free (EECF). Calls to bundle contracts are often followed by
changes to storage and thus do not satisfy the first condition
imposed by VERX on external calls (see Section [VIII). For
example, consider function invest () of the crowdsale (Fig. [2)

which calls the escrow contract. Without additional predicates,
the variable escrow is abstracted away, meaning that it can
store the address of any (including an external) contract. Under
this abstraction, VERX fails to verify the specification because
the function writes to variable raised after the call. To avoid
this false alarm, VERX automatically adds the points-to pred-
icate: Crowdsale.escrow == Escrow and proves that variable
escrow always points to the escrow (a bundle contract), and
by doing so avoids aborting the verification process.

Boolean/enumerated predicates. For our overview example,
VERX also adds the three predicates

{Escrow.state == X | X € {oPEN, SUCCESS, REFUND } }.

These predicates are needed to capture the possible state
transitions of the escrow. Without them, VERX analyzes spu-
rious traces which violate the properties. Concretely, VERX
fails to prove that the escrow cannot transition from a
state where Escrow.state == REFUND holds to a state where
Escrow.state == SUCCESS holds (and vice versa) and, in turn,
fails to verify property pra.

D. VERX'’s Symbolic Execution Engine

Finally, we compare VERX’s symbolic execution engine
to three other state-of-the-art engines: Oyente [47], Mythril
v0.19.3 [50]], and Manticore v0.1.9 [2]]. We collected 41 tests
from the smart contract security project [5], where security
experts maintain a collection of vulnerable smart contracts.
Our benchmark consists of two kinds of tests: assertions and
arithmetic, where the tests check for failed assertions and,
respectively, over- and under-flows.

Table shows the results. For each of the four systems,
we report: detected (TP), missed (FN), falsely reported (FP),
and correctly unreported (TN) violations. In our tests, we used
a timeout (T/O) of one hour.

Results indicate that VERX outperforms other symbolic
execution tools in terms of precision. VERX has no false
negatives and only 1 false positive. The test for which VERX
reports a FP is a synthetic example that checks if the remaining
gas decreases during execution, and VERX over-approximates
gas-mechanics, which is sound for verification.

X. RELATED WORK
We now describe the works that are closely related to ours.

Predicate abstraction. Predicate abstraction [35] has been
shown successful to verify safety properties. SLAM [14], [15]
automatically constructs a boolean program from a C program
to verify properties. BLAST [39], [40] increases precision
by adding predicates derived from the proofs of infeasible
traces. SatAbs [17], MAGIC [23]], Murphy [30], and Java
PathFinder [29] also build on predicate abstraction for verifica-
tion and differ mostly in the properties and programs analyzed.
Other works show how to apply refinement during abstraction,
e.g., the authors of [49] describe refinement by partitioning
traces. Our work is inspired by the above approaches. In

contrast, it is tailored to contracts and applies abstraction only
at the end of transactions.

Symbolic execution. Symbolic execution has been shown
successful in finding property violations of programs [12],
[122f], [45[, 53], [63], [67]. To mitigate path explosion due to
loops and recursive calls, different heuristics have been sug-
gested: favoring paths that may lead to uncovered code [22],
constraining search depth [53]], using fitness functions [67],
chopping functions [63]], function and loop summaries to reuse
repetitive computations [10], [33]], [34], and using concrete
inputs to select symbolic paths [[11fl, [56], [57], [60], [70].
The authors of [69]] use symbolic execution to prune paths
irrelevant when verifying regular properties, which is sound
under input independency assumptions. To reduce paths via
subsumption, the authors of [[13]] combine symbolic execution
with abstraction to analyze programs that manipulate arrays
and lists. In the context of contracts, there are different
symbolic engines for Ethereum [2], [24], [46], [47], [S0],
[51]. Some of these support multiple transactions and employ
heuristics to guide the path exploration. In contrast, our
symbolic engine is more precise, as shown in our evaluation,
and handles hash collisions more efficiently.

Analysis of temporal properties. Many works have studied
analysis of temporal properties. In [55]], the authors show
an approach to test for violations to past LTL formulas.
In [16], the authors show a verification of LTL formulas
for UML models. T2 [21] is a system to verify temporal
properties over LLVM which supports linear integer arithmetic
programs. E-HSF [18] verifies existential CTL formulas by
representing them as existentially quantified Horn-like clauses,
and using a counterexample-guided approach to solve the
clauses. Typestates [61] enable one to express correct usage
rules of class operations or protocols. Some of our evaluated
properties can be expressed as typestates.

Static analysis and verification of smart contracts. Declar-
ative static analysis tools [20]], [36f, [64], [65] use Datalog to
identify generic security vulnerabilities in Ethereum contracts.
These tools focus on data-flow and gas-related vulnerabilities.
Slither [4] and SmartCheck [62]] identify vulnerabilities on the
abstract-syntax tree of the contract’s source code. The analysis
of Grossman et al. [38] targets vulnerabilities due to callbacks
in contracts. In contrast to our work, these approaches do
not support the verification of temporal properties. In [43]],
Hirai defines a formal model for EVM in the Lem language.
Formal EVM semantics have been defined also defined for
F* [37], the K framework [42]], and Isabelle/HOL [9]. These
approaches provide formal guarantees while being precise (no
false positives). Some of these frameworks are non-trivial
to automate. In contrast, we target automated verification of
temporal properties. Analysis of temporal properties of smart
contracts has also been considered in [[59]], where authors show
how to manually encode such properties and verify them with
Cogq. In contrast, we show an automatic approach and provide
an end-to-end tool to analyze temporal safety properties.

XI. CONCLUSION

We presented VERX, the first verifier that can automatically
prove temporal safety properties of Ethereum smart contracts.
The verifier is based on a careful combination of three ideas:
reduction of temporal safety verification to reachability check-
ing, an efficient symbolic execution engine used to compute
precise symbolic states within a transaction, and delayed
abstraction which approximates symbolic states at the end of
transactions into abstract states. Delayed abstraction allows
the verifier to reduce the potentially unbounded concrete state
space of the contact into a finite, bounded representation,
while still maintaining precision (thanks to employing precise
reasoning during transactions). We demonstrated that VERX
is practical and automatically proves 83 properties over 12
real-world Ethereum projects. Based on these experiments,
we believe VERX is an effective system for verifying custom
functional properties of smart contracts.

ACKNOWLEDGMENTS

The authors would like to thank Hubert Ritzdorf from
ChainSecurity AG for the valuable feedback on the specifics of
the Ethereum Virtual Machine. We also thank the anonymous
reviewers for their constructive comments.

REFERENCES
B

—

The dao hack explained: Unfortunate take-off of smart contracts, 2018.
Available from: https://medium.com/@ogucluturk/.

Manticore, 2018. Available from: https://github.com/trailofbits/
manticore.

Openzeppelin library, 2018. Available from: |https://github.com/
OpenZeppelin/openzeppelin-solidity.

[4] Slither, 2018. Available from: https://github.com/trailofbits/slither.

[5] Smart contract security project, 2018. Available from: https://github.
com/SmartContractSecurity/SWC-registry/.

Solidity language documentation, 2018. Available from: https://solidity.
readthedocs.i0.

Formal verification of multicollateral dai, 2019. Available from: https:
//github.com/dapphub/k-dss/,

Solidity docs: Access to external variables, functions and libraries, 2019.
Available from: https://solidity.readthedocs.10/en/v0.5.9/assembly.html#
access-to-external- variables- functions-and- libraries.

Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples.
Towards verifying ethereum smart contract bytecode in isabelle/hol. In
International Conference on Certified Programs and Proofs, CPP. ACM,
2018.

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven
compositional symbolic execution. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, pages 367-381, 2008.
Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of smartphone apps. In Symposium on the
Foundations of Software Engineering, FSE, 2012.

Saswat Anand, Corina S. Pasareanu, and Willem Visser. JPF-SE: A
symbolic execution extension to java pathfinder. In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS, pages 134-138,
2007.

Saswat Anand, Corina S. Pasareanu, and Willem Visser. Symbolic
execution with abstraction. International Journal on Software Tools for
Technology Transfer, STTT, pages 53-67, 2009.

Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Ra-
jamani. Automatic predicate abstraction of C programs. In Conference
on Programming Language Design and Implementation (PLDI), pages
203-213. ACM, 2001.

Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging
system software via static analysis. In Symposium on Principles of
Programming Languages, POPL, pages 1-3. ACM, 2002.

[2

—

[3

[t}

[6

=

[7

—

[8

—

[9

—

[10]

[11]

(12]

(13]

[14]

[15]

[16] Luciano Baresi, Mohammad Mehdi Pourhashem Kallehbasti, and Matteo
Rossi. Efficient scalable verification of LTL specifications. In Inter-
national Conference on Software Engineering, ICSE, pages 711-721.
ACM/IEEE, 2015.

Gérard Basler, Alastair F. Donaldson, Alexander Kaiser, Daniel Kroen-
ing, Michael Tautschnig, and Thomas Wahl. satabs: A bit-precise verifier
for C programs - (competition contribution). In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS, pages 552555,
2012.

Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solv-
ing existentially quantified horn clauses. In Computer Aided Verification,
CAV, pages 869-882, 2013.

Robert S Boyer, Bernard Elspas, and Karl N Levitt. Selecta formal
system for testing and debugging programs by symbolic execution. ACM
SigPlan Notices, pages 234-245, 1975.

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts. CoRR, 2018.

Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir
Piterman. T2: temporal property verification. In Tools and Algorithms
for the Construction and Analysis of Systems, TACAS, pages 387-393,
2016.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In USENIX Symposium on Operating Systems Design and
Implementation, OSDI, pages 209-224, 2008.

Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut
Veith. Modular verification of software components in C. In Inter-
national Conference on Software Engineering, ICSE, pages 385-395.
ACM/IEEE, 2003.

Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, and Zijiang Yang. scom-
pile: Critical path identification and analysis for smart contracts. CoRR,
2018.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In International
Conference Computer Aided Verification, CAV, pages 154-169, 2000.
Byron Cook, Eric Koskinen, and Moshe Vardi. Temporal property
verification as a program analysis task. In International Conference
Computer Aided Verification, CAV. Springer Berlin Heidelberg, 2011.
Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In Proceedings of Symposium on Principles of
programming languages, POPL, pages 238-252. ACM, 1977.

Andrei Marian Dan, Yuri Meshman, Martin Vechev, and Eran Yahav.
Predicate abstraction for relaxed memory models. In Francesco Logozzo
and Manuel Fihndrich, editors, Static Analysis, pages 84—104, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

Jakub Daniel, Pavel Parizek, and Corina S. Pasareanu. Predicate
abstraction in java pathfinder. Software Engineering Notes, pages 1—
5, 2014.

Satyaki Das, David L. Dill, and Seungjoon Park. Experience with
predicate abstraction. In Computer Aided Verification, CAV, pages 160—
171, 1999.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS, pages 337-340, 2008.

Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software
verification. In SIGPLAN Notices, pages 191-202. ACM, 2002.
Patrice Godefroid. Compositional dynamic test generation. In Sympo-
sium on Principles of Programming Languages, POPL, pages 47-54.
ACM, 2007.

Patrice Godefroid and Daniel Luchaup. Automatic partial loop sum-
marization in dynamic test generation. In International Symposium on
Software Testing and Analysis, ISSTA, pages 23-33, 2011.

Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with PVS. In Computer Aided Verification, CAV, pages 72-83, 1997.
Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. Madmax: Surviving out-of-gas con-
ditions in ethereum smart contracts. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA. ACM,
2018.

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic
framework for the security analysis of ethereum smart contracts. In
Principles of Security and Trust, POST, pages 243-269, 2018.

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[33]

(34

[l

[35]

(36]

[37]

https://medium.com/@ogucluturk/
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/trailofbits/slither
https://github.com/SmartContractSecurity/SWC-registry/
https://github.com/SmartContractSecurity/SWC-registry/
https://solidity.readthedocs.io
https://solidity.readthedocs.io
https://github.com/dapphub/k-dss/
https://github.com/dapphub/k-dss/
https://solidity.readthedocs.io/en/v0.5.9/assembly.html#access-to-external-variables-functions-and-libraries
https://solidity.readthedocs.io/en/v0.5.9/assembly.html#access-to-external-variables-functions-and-libraries

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

(541

[55]

[56]

[57

[58]

[59]

[60]

[61]

[62]

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,
Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of
effectively callback free objects with applications to smart contracts.
In Symposium on Principles of Programming Languages, POPL. ACM,
2018.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L.
McMillan. Abstractions from proofs. In Symposium on Principles of
Programming Languages, POPL, pages 232-244. ACM, 2004.
Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. In Symposium on Principles of Programming
Languages, POPL, pages 58-70. ACM, 2002.

Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS), pages 463-492, 1990.

E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. Kevm:
A complete formal semantics of the ethereum virtual machine. In
Computer Security Foundations Symposium (CSF), 2018.

Yoichi Hirai. Defining the ethereum virtual machine for interactive
theorem provers. In Financial Cryptography and Data Security. Springer
International Publishing, 2017.

Theodoros Kasampalis, Dwight Guth, Brandon Moore, Traian Ser-
banuta, Virgil Serbanuta, Daniele Filaretti, Grigore Rosu, and Ralph
Johnson. Iele: An intermediate-level blockchain language designed and
implemented using formal semantics. Technical report, July 2018.
James C King. Symbolic execution and program testing. Communica-
tions of the ACM, pages 385-394, 1976.

Johannes Krupp and Christian Rossow. Teether: Gnawing at ethereum
to automatically exploit smart contracts. In USENIX Security, 2018.
Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Conference on Computer
and Communications Security, CCS, 2016.

Zohar Manna and Amir Pnueli. Temporal verification of reactive
systems: safety. Springer, 1995.
Laurent Mauborgne and Xavier Rival.
interpretation based static analyzers.
Programming, ESOP, pages 5-20, 2005.
Bernhard Mueller. Smashing ethereum smart contracts for fun and real
profit. HITB SECCONF Amsterdam, 2018.

Ivica Nikoli¢, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. Finding the greedy, prodigal, and suicidal contracts at scale.
In Annual Computer Security Applications Conference, ACSAC, pages
653-663. ACM, 2018.

Christos H. Papadimitriou. The serializability of concurrent database
updates. Journal of the ACM, pages 631-653, 1979.

Corina S. Pasareanu and Neha Rungta. Symbolic pathfinder: symbolic
execution of java bytecode. In International Conference on Automated
Software Engineering, ASE, pages 179-180. ACM/IEEE, 2010.
Grigore Rosu. On safety properties and their monitoring. Scientific
Annals of Computer Science, pages 327-365, 2012.

Grigore Rosu, Feng Chen, and Thomas Ball. Synthesizing monitors
for safety properties: This time with calls and returns. In International
Workshop on Runtime Verification, RV, pages 51-68, 2008.

Koushik Sen. Concolic testing. In International Conference on Auto-
mated Software Engineering ASE, pages 571-572. IEEE/ACM, 2007.
Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit
testing engine for C. In International Symposium on Foundations of
Software Engineering, FSE, pages 263-272, 2005.

Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart
contracts. In International Conference on Financial Cryptography and
Data Security, pages 478-493. Springer, 2017.

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Temporal properties
of smart contracts. In Leveraging Applications of Formal Methods,
Verification and Validation, pages 323-338, 2018.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In Network and Distributed System Security Symposium,
NDSS, 2016.

Robert E. Strom and Shaula Yemini. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE Trans. Software
Eng., pages 157-171, 1986.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov. Smartcheck: Static analysis of

Trace partitioning in abstract
In European Symposium on

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

ethereum smart contracts. In International Workshop on Emerging
Trends in Software Engineering for Blockchain, WETSEB, 2018.

David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar.
Chopped symbolic execution. In Proceedings of the 40th International
Conference on Software Engineering, ICSE, pages 350-360. ACM/IEEE,
2018.

Petar Tsankov. Security analysis of smart contracts in datalog. In
Leveraging Applications of Formal Methods, Verification and Validation.
Springer International Publishing, 2018.

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Biinzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In Conference on Computer and Communications
Security, CCS, 2018.

Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151:1-32, 2014.

Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte.
Fitness-guided path exploration in dynamic symbolic execution. In
International Conference on Dependable Systems and Networks, DSN,
pages 359-368, 2009.

Zheng Yang and Hang Lei. Formal process virtual machine for smart
contracts verification. CoRR, abs/1805.00808, 2018.

Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong.
Symbolic verification of regular properties. In International Conference
on Software Engineering, ICSE, pages 871-881. IEEE/ACM, 2018.
Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu.
Regular property guided dynamic symbolic execution. In International
Conference on Software Engineering, ICSE, pages 643—-653. IEEE/ACM,
2015.

